DocumentCode
32011
Title
Simulation of Fractional Brownian Surfaces via Spectral Synthesis on Manifolds
Author
Gelbaum, Zachary ; Titus, Mathew
Author_Institution
Longboard Capital Advisors, LLC, Santa Monica, CA, USA
Volume
23
Issue
10
fYear
2014
fDate
Oct. 2014
Firstpage
4383
Lastpage
4388
Abstract
Using the spectral decomposition of the Laplace-Beltrami operator, we simulate fractal surfaces as random series of eigenfunctions. This approach allows us to generate random fields over smooth manifolds of arbitrary dimension, generalizing previous work with fractional Brownian motion with multidimensional parameter. We give examples of surfaces with and without boundary and discuss implementation.
Keywords
Brownian motion; eigenvalues and eigenfunctions; fractals; image processing; spectral analysis; Laplace-Beltrami operator; fractional Brownian motion; fractional Brownian surfaces; random fields; spectral decomposition; spectral synthesis; Approximation methods; Convergence; Eigenvalues and eigenfunctions; Fractals; Laplace equations; Manifolds; Surface treatment; Fractal surfaces; discrete Laplace-Beltrami operators; fractional Brownian motion;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2014.2348793
Filename
6879494
Link To Document