• DocumentCode
    32011
  • Title

    Simulation of Fractional Brownian Surfaces via Spectral Synthesis on Manifolds

  • Author

    Gelbaum, Zachary ; Titus, Mathew

  • Author_Institution
    Longboard Capital Advisors, LLC, Santa Monica, CA, USA
  • Volume
    23
  • Issue
    10
  • fYear
    2014
  • fDate
    Oct. 2014
  • Firstpage
    4383
  • Lastpage
    4388
  • Abstract
    Using the spectral decomposition of the Laplace-Beltrami operator, we simulate fractal surfaces as random series of eigenfunctions. This approach allows us to generate random fields over smooth manifolds of arbitrary dimension, generalizing previous work with fractional Brownian motion with multidimensional parameter. We give examples of surfaces with and without boundary and discuss implementation.
  • Keywords
    Brownian motion; eigenvalues and eigenfunctions; fractals; image processing; spectral analysis; Laplace-Beltrami operator; fractional Brownian motion; fractional Brownian surfaces; random fields; spectral decomposition; spectral synthesis; Approximation methods; Convergence; Eigenvalues and eigenfunctions; Fractals; Laplace equations; Manifolds; Surface treatment; Fractal surfaces; discrete Laplace-Beltrami operators; fractional Brownian motion;
  • fLanguage
    English
  • Journal_Title
    Image Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7149
  • Type

    jour

  • DOI
    10.1109/TIP.2014.2348793
  • Filename
    6879494