DocumentCode :
3201984
Title :
Identification of nonlinear systems using regular fuzzy c-elliptotype clustering
Author :
Runkler, Thomas A. ; Palm, Rainer W.
Author_Institution :
Corp. Res. & Dev., Siemens AG, Munich, Germany
Volume :
2
fYear :
1996
fDate :
8-11 Sep 1996
Firstpage :
1026
Abstract :
In many fuzzy control applications regular fuzzy systems are used, i.e. the Takagi-Sugeno rule bases with equidistant membership functions of equal shape. For the direct extraction of regular fuzzy systems from measured data a regular fuzzy c-elliptotype clustering algorithm is developed. In contrast to the conventional fuzzy c-elliptotype clustering, the modified algorithm identifies clusters located on a regular grid. Regular fuzzy clustering has a low computational complexity and good convergence properties
Keywords :
computational complexity; data analysis; fuzzy control; fuzzy systems; identification; nonlinear systems; Takagi-Sugeno rule bases; computational complexity; convergence; equidistant membership functions; fuzzy c-elliptotype; fuzzy clustering; fuzzy data analysis; fuzzy systems; identification; mechanical systems; nonlinear systems; Clustering algorithms; Eigenvalues and eigenfunctions; Fuzzy control; Fuzzy systems; Nonlinear systems; Prototypes; Scattering; Shape; Takagi-Sugeno model; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 1996., Proceedings of the Fifth IEEE International Conference on
Conference_Location :
New Orleans, LA
Print_ISBN :
0-7803-3645-3
Type :
conf
DOI :
10.1109/FUZZY.1996.552319
Filename :
552319
Link To Document :
بازگشت