• DocumentCode
    321396
  • Title

    Information states in optimal control of stochastic systems: a Lie algebraic theoretic approach

  • Author

    Charalambous, Charalambos D. ; Elliott, Robert J.

  • Author_Institution
    Dept. of Electr. Eng., McGill Univ., Montreal, Que., Canada
  • Volume
    3
  • fYear
    1997
  • fDate
    10-12 Dec 1997
  • Firstpage
    2801
  • Abstract
    We introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Using a Lie algebraic formulation, the sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers
  • Keywords
    Lie algebras; linear systems; multidimensional systems; nonlinear control systems; observers; optimal control; stochastic systems; Lie algebraic theoretic approach; finite-dimensional controllers; information states; optimal control; stochastic systems; sufficient statistic algebra; Algebra; Control systems; Differential algebraic equations; Integral equations; Nonlinear control systems; Nonlinear equations; Optimal control; Statistics; Stochastic processes; Stochastic systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
  • Conference_Location
    San Diego, CA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-4187-2
  • Type

    conf

  • DOI
    10.1109/CDC.1997.657836
  • Filename
    657836