DocumentCode :
3223349
Title :
Estimation of class correlation parameters in images for context classification
Author :
Dattatraya, G.R.
Author_Institution :
Dept. of Comput. Sci., Texas Univ., Richardson, TX
Volume :
i
fYear :
1990
fDate :
16-21 Jun 1990
Firstpage :
937
Abstract :
A wide class of models for the probabilistic dependency of class labels in a neighborhood within an image is defined. A convergent and computationally efficient closed-form estimator for these context-defining parameters is developed. The estimation procedure assumes that the class conditional densities are known and operates on unlabeled image data. The estimator can be recursively implemented. Examples of practical context models within the class of models are given. The appropriate model can also be chosen with the aid of the context parameter estimates. Applications of the estimator in existing context classifiers are pointed out
Keywords :
estimation theory; parameter estimation; pattern recognition; picture processing; probability; class labels; context parameter estimates; context-defining parameters; correlation parameters; pattern recognition; picture processing; probability; Computer science; Context modeling; Density functional theory; Image converters; Image processing; Parameter estimation; Probability; Recursive estimation; Statistics; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1990. Proceedings., 10th International Conference on
Conference_Location :
Atlantic City, NJ
Print_ISBN :
0-8186-2062-5
Type :
conf
DOI :
10.1109/ICPR.1990.118244
Filename :
118244
Link To Document :
بازگشت