DocumentCode :
3223354
Title :
Hierarchical Diagonal Blocking and Precision Reduction Applied to Combinatorial Multigrid
Author :
Blelloch, Guy E. ; Koutis, Ioannis ; Miller, Gary L. ; Tangwongsan, Kanat
Author_Institution :
Comput. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2010
fDate :
13-19 Nov. 2010
Firstpage :
1
Lastpage :
12
Abstract :
Memory bandwidth is a major limiting factor in the scalability of parallel iterative algorithms that rely on sparse matrix-vector multiplication (SpMV). This paper introduces Hierarchical Diagonal Blocking (HDB), an approach which we believe captures many of the existing optimization techniques for SpMV in a common representation. Using this representation in conjuction with precision-reduction techniques, we develop and evaluate high-performance SpMV kernels. We also study the implications of using our SpMV kernels in a complete iterative solver. Our method of choice is a Combinatorial Multigrid solver that can fully utilize our fastest reduced-precision SpMV kernel without sacrificing the quality of the solution. We provide extensive empirical evaluation of the effectiveness of the approach on a variety of benchmark matrices, demonstrating substantial speedups on all matrices considered.
Keywords :
iterative methods; matrix multiplication; parallel algorithms; sparse matrices; storage management; SpMV kernels; combinatorial multigrid; hierarchical diagonal blocking; iterative solver; memory bandwidth; parallel iterative algorithms; precision reduction; sparse matrix-vector multiplication; Algorithm design and analysis; Bandwidth; Complexity theory; Iterative methods; Particle separators; Sparse matrices; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for
Conference_Location :
New Orleans, LA
Print_ISBN :
978-1-4244-7557-5
Electronic_ISBN :
978-1-4244-7558-2
Type :
conf
DOI :
10.1109/SC.2010.29
Filename :
5644892
Link To Document :
بازگشت