DocumentCode :
3230509
Title :
Malicious-Client Security in Blind Seer: A Scalable Private DBMS
Author :
Fisc, Ben A. ; Vo, Binh ; Krell, Fernando ; Kumarasubramanian, Abishek ; Kolesnikov, Vladimir ; Malkin, Tal ; Bellovin, Steven M.
fYear :
2015
fDate :
17-21 May 2015
Firstpage :
395
Lastpage :
410
Abstract :
The Blind Seer system (Oakland 2014) is an efficient and scalable DBMS that affords both client query privacy and server data protection. It also provides the ability to enforce authorization policies on the system, restricting client´s queries while maintaining the privacy of both query and policy. Blind Seer supports a rich query set, including arbitrary boolean formulas, and is provably secure with respect to a controlled amount of search pattern leakage. No other system to date achieves this tradeoff of performance, generality, and provable privacy. A major shortcoming of Blind Seer is its reliance on semi-honest security, particularly for access control and data protection. A malicious client could easily cheat the query authorization policy and obtain any database records satisfying any query of its choice, thus violating basic security features of any standard DBMS. In sum, Blind Seer offers additional privacy to a client, but sacrifices a basic security tenet of DBMS. In the present work, we completely resolve the issue of a malicious client. We show how to achieve robust access control and data protection in Blind Seer with virtually no added cost to performance or privacy. Our approach also involves a novel technique for a semi-private function secure function evaluation (SPF-SFE) that may have independent applications. We fully implement our solution and report on its performance.
Keywords :
Boolean functions; authorisation; data protection; database management systems; query processing; Blind Seer system; Boolean formulas; SPF-SFE; authorization policies; client query privacy; malicious-client security; query authorization policy; robust access control; scalable private DBMS; search pattern leakage; semiprivate function secure function evaluation; server data protection; Cryptography; Indexes; Logic gates; Privacy; Protocols; Servers; applied cryptography; private DBMS; searchable encryption;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Security and Privacy (SP), 2015 IEEE Symposium on
Conference_Location :
San Jose, CA
ISSN :
1081-6011
Type :
conf
DOI :
10.1109/SP.2015.31
Filename :
7163038
Link To Document :
بازگشت