DocumentCode :
3231762
Title :
EEG feature extraction and selection techniques for epileptic detection: A comparative study
Author :
Hussein, Ramy ; Mohamed, Amr ; Shahan, Khaled ; Mohamed, Ahmed Abdelreheem
Author_Institution :
Dept. of CS & Eng., Qatar Univ., Doha, Qatar
fYear :
2013
fDate :
7-9 April 2013
Firstpage :
170
Lastpage :
175
Abstract :
Epileptic detection techniques rely heavily on the Electroencephalography (EEG) as representative signal carrying valuable information pertaining to the current brain state. For these techniques to be efficient and reliable, a set of discriminant, epileptic-related features has first to be obtained. Furthermore, depending on the classifier model used, a subset of these features is identified and selected for the classifier to yield an optimum performance. Many feature extraction and selection techniques have been reported in the literature, utilizing different strategies. The aim of this work is to review the most widely used ones and to evaluate their performance in terms of their overall complexity and classification accuracy. For this purpose, the support vector machine (SVM) is chosen as a classifier model to study the performance of the obtained features. Extensive experimental work has been carried out and the comparative results and trade-offs are reported.
Keywords :
electroencephalography; feature extraction; medical signal processing; signal detection; support vector machines; EEG feature extraction; SVM; brain state; classification accuracy; classifier model; electroencephalography; epileptic detection; feature selection; representative signal; support vector machine; Accuracy; Discrete wavelet transforms; Electroencephalography; Feature extraction; Frequency-domain analysis; Support vector machines; Time-domain analysis; EEG; epileptic seizure; feature extraction; feature selsection; support vector machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computers & Informatics (ISCI), 2013 IEEE Symposium on
Conference_Location :
Langkawi
Print_ISBN :
978-1-4799-0209-5
Type :
conf
DOI :
10.1109/ISCI.2013.6612397
Filename :
6612397
Link To Document :
بازگشت