• DocumentCode
    323401
  • Title

    A method identifying the parameters of Bounc-Wen hysteretic nonlinear model based on genetic algorithm

  • Author

    Xueliang, Zhang ; Yumei, Huang ; Yongchao, Liu ; Xiaoyue, Wang ; Feng, Gao

  • Author_Institution
    Dept. of Mech. Eng., Xian Univ. of Technol., China
  • Volume
    1
  • fYear
    1997
  • fDate
    28-31 Oct 1997
  • Firstpage
    602
  • Abstract
    The Bounc-Wen model (Wen, 1976) is a typical hysteretic nonlinear model, and its parameter identification is very important. Existing identification methods depend heavily on the given initial values of the parameters. Based on the advantages of genetic algorithms (GA), this paper builds the fitness function corresponding to the problem and adopts the crossover and mutation between the gene code strings of the same variables, improving the convergence rate of GA. The example proves that this method is feasible
  • Keywords
    convergence; genetic algorithms; hysteresis; nonlinear systems; parameter estimation; Bounc Wen model; convergence rate; crossover; fitness function; gene code strings; genetic algorithms; hysteretic nonlinear model; mutation; parameter identification; Computational modeling; Damping; Genetics; Hysteresis; Iterative algorithms; Iterative methods; Jacobian matrices; Least squares methods; Parameter estimation; Shape;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Processing Systems, 1997. ICIPS '97. 1997 IEEE International Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    0-7803-4253-4
  • Type

    conf

  • DOI
    10.1109/ICIPS.1997.672855
  • Filename
    672855