DocumentCode :
3238142
Title :
An Efficient Expectation-Maximisation Algorithm for Spike Classification
Author :
Tomás, Pedro ; Sousa, Leonel
Author_Institution :
1st Tech. Univ. of Lisbon, Lisbon
fYear :
2007
fDate :
1-4 July 2007
Firstpage :
203
Lastpage :
206
Abstract :
This paper presents a new Expectation-Maximisation algorithm for classifying a data set originated from an unknown number of sources. The proposed algorithm is based on the Kullback-Leibler divergence and uses a minimum message length criteria to penalise adding extra data sources. It is able to estimate the parameters of the model for each data source and to determine the total number of sources producing the data. We apply our algorithm to the classification of spikes originated from multiple neurons but recorded by a single microelectrode. The obtained experimental results show the effectiveness of the proposed algorithm.
Keywords :
blind source separation; expectation-maximisation algorithm; eye; medical signal processing; neurophysiology; signal classification; unsupervised learning; visual evoked potentials; Kullback-Leibler divergence; blind source separation; expectation-maximisation algorithm; minimum message length criteria; retina neural code; spike classification; unsupervised learning model; Blind source separation; Classification algorithms; Expectation-maximization algorithms; Extracellular; Iterative algorithms; Microelectrodes; Neurons; Parameter estimation; Retina; Unsupervised learning; Unsupervised learning; blind source separation; model selection; spike classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Digital Signal Processing, 2007 15th International Conference on
Conference_Location :
Cardiff
Print_ISBN :
1-4244-0882-2
Electronic_ISBN :
1-4244-0882-2
Type :
conf
DOI :
10.1109/ICDSP.2007.4288554
Filename :
4288554
Link To Document :
بازگشت