• DocumentCode
    325317
  • Title

    Algebraic approach to robust controller design: a geometric interpretation

  • Author

    Enrion, Didierh ; SeBek, Michaelse ; Tarbouriech, Sophie

  • Author_Institution
    Lab. d´´Autom. et d´´Anal. des Syst., CNRS, Toulouse, France
  • Volume
    5
  • fYear
    1998
  • fDate
    21-26 Jun 1998
  • Firstpage
    2703
  • Abstract
    The problem of robust controller design is addressed for a single-input single-output plant with a single uncertain parameter. Given one controller that stabilizes the nominal plant, the Youla-Kucera parametrization of all stabilizing controllers and quadratic forms over Hermite-Fujiwara matrices are used to provide clear and simple geometric answers to the following questions: Can the plant be robustly stabilized by a nominally stabilizing controller? How can this robust controller be designed? Thanks to results on bilinear matrix inequalities, this geometric interpretation allows us to state the equivalence between robust controller design and the concave minimization problem
  • Keywords
    control system synthesis; geometry; matrix algebra; minimisation; robust control; Hermite-Fujiwara matrices; Youla-Kucera parametrization; algebraic approach; bilinear matrix inequalities; concave minimization problem; geometric interpretation; nominally stabilizing controller; robust controller design; single-input single-output plant; Algorithm design and analysis; Automatic control; Eigenvalues and eigenfunctions; Laboratories; Linear matrix inequalities; Linear systems; Polynomials; Robust control; Robustness; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1998. Proceedings of the 1998
  • Conference_Location
    Philadelphia, PA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-4530-4
  • Type

    conf

  • DOI
    10.1109/ACC.1998.688341
  • Filename
    688341