DocumentCode
325394
Title
RBFN identification of a solution copolymerization model
Author
Bomberger, John D. ; Seborg, Dale E. ; Ogunnaike, Babatunde A.
Author_Institution
Dept. of Chem. Eng., California Univ., Santa Barbara, CA, USA
Volume
5
fYear
1998
fDate
21-26 Jun 1998
Firstpage
3182
Abstract
Methods developed for radial basis function network (RBFN) identification are applied to a complex multiple-input, multiple-output (MIMO) simulation. For RBFN identification, stepwise regression analysis is used, together with model order determination using the method of false nearest neighbors and width parameter estimation using approximate gradient norms. Industrially practical input sequence design is also considered
Keywords
MIMO systems; autoregressive processes; chemical technology; feedforward neural nets; parameter estimation; polymerisation; process control; statistical analysis; MIMO simulation; RBFN; approximate gradient norms; complex multiple-input multiple-output simulation; false nearest neighbors method; input sequence design; model order determination; radial basis function network identification; solution copolymerization model; stepwise regression analysis; width parameter estimation; Chemical engineering; Continuous-stirred tank reactor; Input variables; MIMO; Nearest neighbor searches; Parameter estimation; Polymers; Radial basis function networks; Regression analysis; Solvents;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 1998. Proceedings of the 1998
Conference_Location
Philadelphia, PA
ISSN
0743-1619
Print_ISBN
0-7803-4530-4
Type
conf
DOI
10.1109/ACC.1998.688449
Filename
688449
Link To Document