• DocumentCode
    325394
  • Title

    RBFN identification of a solution copolymerization model

  • Author

    Bomberger, John D. ; Seborg, Dale E. ; Ogunnaike, Babatunde A.

  • Author_Institution
    Dept. of Chem. Eng., California Univ., Santa Barbara, CA, USA
  • Volume
    5
  • fYear
    1998
  • fDate
    21-26 Jun 1998
  • Firstpage
    3182
  • Abstract
    Methods developed for radial basis function network (RBFN) identification are applied to a complex multiple-input, multiple-output (MIMO) simulation. For RBFN identification, stepwise regression analysis is used, together with model order determination using the method of false nearest neighbors and width parameter estimation using approximate gradient norms. Industrially practical input sequence design is also considered
  • Keywords
    MIMO systems; autoregressive processes; chemical technology; feedforward neural nets; parameter estimation; polymerisation; process control; statistical analysis; MIMO simulation; RBFN; approximate gradient norms; complex multiple-input multiple-output simulation; false nearest neighbors method; input sequence design; model order determination; radial basis function network identification; solution copolymerization model; stepwise regression analysis; width parameter estimation; Chemical engineering; Continuous-stirred tank reactor; Input variables; MIMO; Nearest neighbor searches; Parameter estimation; Polymers; Radial basis function networks; Regression analysis; Solvents;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1998. Proceedings of the 1998
  • Conference_Location
    Philadelphia, PA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-4530-4
  • Type

    conf

  • DOI
    10.1109/ACC.1998.688449
  • Filename
    688449