DocumentCode :
3262457
Title :
Optimal Portfolio Selection under the Short-range Fractional Brownian Motion
Author :
Gao, Jianwei
Author_Institution :
Sch. of Bus. Adm., North China Electr. Power Univ., Beijing, China
Volume :
2
fYear :
2009
fDate :
6-7 June 2009
Firstpage :
433
Lastpage :
436
Abstract :
In this paper, we study the classical portfolio selection problem and extend the Brownian motion about the noises involved in the dynamics of wealth to a short-range fractional Brownian motion. Instead of using the classical tool of optimal control as optimization engine, we convert the stochastic optimal control problem into a non-random optimization by using Hamilton and Lagrange multiplier, and conclude the solution of the initial problem. Based on deterministic optimal control principle, we obtain the explicit solution of the optimal strategies. Finally, we present a simulation and analyze the sensitivity of the fractional order to the optimal strategy.
Keywords :
Brownian motion; Gaussian noise; optimisation; Brownian motion; Hamilton and Lagrange multiplier; deterministic optimal control; optimization engine; portfolio selection problem; stochastic optimal control problem; 1f noise; Brownian motion; Economic indicators; Engines; Optimal control; Portfolios; Solid modeling; Stochastic processes; Utility theory; White noise; Fractional Brownian motion; Lagrange multiplier; portfolio selection; stochastic optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Natural Computing, 2009. CINC '09. International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-0-7695-3645-3
Type :
conf
DOI :
10.1109/CINC.2009.159
Filename :
5230927
Link To Document :
بازگشت