• DocumentCode
    326389
  • Title

    The inverse source problem of electromagnetics: linear operator formalism and minimum energy solution

  • Author

    Marengo, E.A. ; Devaney, A.J.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
  • Volume
    2
  • fYear
    1998
  • fDate
    21-26 June 1998
  • Firstpage
    690
  • Abstract
    We address an inverse source problem consisting of finding the time-harmonic current distribution (source) with minimum L/sup 2/ norm (minimum energy) that generates a prescribed electromagnetic field provided outside the source´s support. Using the well-known multipole expansion of the electromagnetic field we compute, via a linear operator formalism, the sought-after minimum L/sup 2/ norm current distribution consistent with the data.
  • Keywords
    Maxwell equations; current distribution; electromagnetic fields; inverse problems; mathematical operators; Maxwell equations; electromagnetic field; electromagnetics; inverse source problem; linear operator formalism; minimum L/sup 2/ norm current distribution; minimum energy; minimum energy solution; multipole expansion; source reconstruction; time-harmonic current distribution; Current distribution; Distributed computing; Electromagnetic fields;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Antennas and Propagation Society International Symposium, 1998. IEEE
  • Conference_Location
    Atlanta, GA, USA
  • Print_ISBN
    0-7803-4478-2
  • Type

    conf

  • DOI
    10.1109/APS.1998.702031
  • Filename
    702031