DocumentCode :
3274004
Title :
Use of bootstrap samples in designing artificial neural network classifiers
Author :
Mitani, Yoshihiro ; Hamamoto, Yoshihiko ; Tomita, Shingo
Author_Institution :
Fac. of Eng., Yamaguchi Univ., Ube, Japan
Volume :
4
fYear :
1995
fDate :
Nov/Dec 1995
Firstpage :
2103
Abstract :
We propose a new bootstrap method for designing artificial neural network (ANN) classifiers. Moreover, the classification performance of ANN classifiers based on the new bootstrap method is demonstrated in small training sample size situations on the artificial data sets
Keywords :
backpropagation; neural nets; pattern classification; statistical analysis; artificial neural network classifiers; bootstrap samples; classification performance; Artificial neural networks; Design engineering; Design methodology; Electronic mail; Error probability; Extrapolation; Intelligent networks; Interpolation; Neurons; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1995. Proceedings., IEEE International Conference on
Conference_Location :
Perth, WA
Print_ISBN :
0-7803-2768-3
Type :
conf
DOI :
10.1109/ICNN.1995.489001
Filename :
489001
Link To Document :
بازگشت