Title :
Gradient-Enhancing Conversion for Illumination-Robust Lane Detection
Author :
Hunjae Yoo ; Ukil Yang ; Kwanghoon Sohn
Author_Institution :
Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea
Abstract :
Lane detection is important in many advanced driver-assistance systems (ADAS). Vision-based lane detection algorithms are widely used and generally use gradient information as a lane feature. However, gradient values between lanes and roads vary with illumination change, which degrades the performance of lane detection systems. In this paper, we propose a gradient-enhancing conversion method for illumination-robust lane detection. Our proposed gradient-enhancing conversion method produces a new gray-level image from an RGB color image based on linear discriminant analysis. The converted images have large gradients at lane boundaries. To deal with illumination changes, the gray-level conversion vector is dynamically updated. In addition, we propose a novel lane detection algorithm, which uses the proposed conversion method, adaptive Canny edge detector, Hough transform, and curve model fitting method. We performed several experiments in various illumination environments and confirmed that the gradient is maximized at lane boundaries on the road. The detection rate of the proposed lane detection algorithm averages 96% and is greater than 93% in very poor environments.
Keywords :
Hough transforms; computer vision; curve fitting; driver information systems; edge detection; feature extraction; gradient methods; image colour analysis; lighting; object detection; statistical analysis; ADAS; Hough transform; RGB color image; adaptive Canny edge detector; advanced driver-assistance systems; curve model fitting method; gradient values; gradient-enhancing conversion method; gray-level conversion vector; gray-level image; illumination-robust lane detection system; lane boundaries; lane feature; linear discriminant analysis; vision-based lane detection algorithms; Gradient-enhancing conversion; illumination-robust method; lane detection; linear discriminant analysis (LDA);
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
DOI :
10.1109/TITS.2013.2252427