• DocumentCode
    328065
  • Title

    The absolute minimum and maximum value problem and the Renyi entropy of order α

  • Author

    Alencar, Marcelo S. ; Assis, Francisco M.

  • Author_Institution
    Dept. de Eng. Electr., Univ. Fed. da Paraiba, Brazil
  • fYear
    1998
  • fDate
    9-13 Aug 1998
  • Firstpage
    239
  • Abstract
    The Renyi entropy of order α can provide information on the minimum and maximum values of a probability distribution p=min{p1 ,p2,...,pN} and p=max(p1,p2 ,...,pN). The absolute minimum valve of a given probability distribution is shown to be related to the limit of the Renyi entropy, as α→-∞, or p=2-limα→-∞Hα(P). The absolute maximum valve is given by p=2-limα→∞Hα(P)
  • Keywords
    entropy; information theory; probability; Renyi entropy; absolute maximum value problem; absolute minimum value problem; information theory; probability distribution; Brazil Council; Chaos; Decoding; Entropy; Equations; Postal services; Probability distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Telecommunications Symposium, 1998. ITS '98 Proceedings. SBT/IEEE International
  • Conference_Location
    Sao Paulo
  • Print_ISBN
    0-7803-5030-8
  • Type

    conf

  • DOI
    10.1109/ITS.1998.713124
  • Filename
    713124