DocumentCode
3293129
Title
Convergence analysis for a class of nonlinear consensus algorithms
Author
Ajorlou, A. ; Momeni, A. ; Aghdam, A.G.
Author_Institution
Dept. of Electr. & Comput. Eng., Concordia Univ., Montréal, QC, Canada
fYear
2010
fDate
June 30 2010-July 2 2010
Firstpage
6318
Lastpage
6323
Abstract
In this paper, sufficient conditions for the convergence of a class of continuous-time nonlinear consensus algorithms for single integrator agents are proposed. More precisely, in the consensus algorithms studied here, the control input of each agent is assumed to be a state-dependent combination of the relative positions of its neighbors in the information flow graph. It is shown that under some mild assumptions, the contraction of the convex hull of the agents can be guaranteed. A set-valued Lasalle-like approach is then employed to derive the convergence from the contracting property. The proposed convergence criteria are verified for two different consensus algorithms via simulations.
Keywords
continuous time systems; convergence; graph theory; multi-agent systems; nonlinear systems; continuous-time nonlinear consensus algorithms; convergence analysis; convex hull; information flow graph; set-valued Lasalle-like approach; single integrator agents; sufficient conditions; Algorithm design and analysis; Convergence; Flow graphs; Lyapunov method; Multiagent systems; Network topology; Protocols; Sensor systems and applications; Stability; Sufficient conditions;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference (ACC), 2010
Conference_Location
Baltimore, MD
ISSN
0743-1619
Print_ISBN
978-1-4244-7426-4
Type
conf
DOI
10.1109/ACC.2010.5531502
Filename
5531502
Link To Document