DocumentCode :
3298173
Title :
Confidence and curvature estimation of curvilinear structures in 3-D
Author :
Bakker, P. ; van Vliet, L.J. ; Verbeek, P.W.
Author_Institution :
Dept. of Appl. Phys., Delft Univ. of Technol., Netherlands
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
139
Abstract :
In this paper we present a new method for estimating confidence and curvature of 3-D curvilinear structures. The gradient structure tensor (GST) models shift-invariance. The eigenstructure of the tensor allows estimation of local dimensionality, orientation, and the corresponding confidence value. Local rotational invariance, which occurs often in images, causes a lower confidence estimate. This underestimation can be corrected for by a parabolic deformation of the data, in such a way that it becomes translational invariant. We show that the optimal deformation can be found analytically and yields a local curvature estimate as a valuable by-product. We tested our new method on synthetic images and applied it to the detection of channels in 3-D seismic delta
Keywords :
image processing; invariance; 3-D curvilinear structures; confidence; confidence value; curvature; curvilinear structures; eigenstructure; gradient structure tensor; local curvature estimate; local rotational invariance; ocal dimensionality; Eigenvalues and eigenfunctions; Geologic measurements; Image analysis; Mathematical model; Pattern recognition; Physics; Robustness; Tensile stress; Testing; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7695-1143-0
Type :
conf
DOI :
10.1109/ICCV.2001.937616
Filename :
937616
Link To Document :
بازگشت