• DocumentCode
    3302003
  • Title

    On the use of information theoretic mean shift for electricity load patterns clustering

  • Author

    Sumaili, Jean ; Keko, Hrvoje ; Miranda, V. ; Chicco, Gianfranco

  • Author_Institution
    Power Syst. Unit, INESC Porto-Inst. de Eng. de Sist. e Comput. do Porto, Porto, Portugal
  • fYear
    2011
  • fDate
    19-23 June 2011
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    This paper analyzes the application of the Information Theoretic (IT) Mean Shift algorithm for modes finding in order to provide the classification of Electricity Customer Load Patterns. The impact of the algorithm parameters is discussed and then clustering indices are used in order to make a comparison with the classical methods available. Results show a good capability of the modes found in capturing the data structure, aggregating similar load patterns and identifying the uncommon patterns (outliers).
  • Keywords
    energy consumption; information theory; pattern classification; pattern clustering; power markets; clustering indices; data structure; electricity customer load pattern classification; electricity load pattern clustering; information theoretic mean shift algorithm; Clustering algorithms; Cost function; Entropy; Indexes; Kernel; Minimization; Partitioning algorithms; clustering; information theoretic learning; load patterns; mean shift; modes finding; outliers;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    PowerTech, 2011 IEEE Trondheim
  • Conference_Location
    Trondheim
  • Print_ISBN
    978-1-4244-8419-5
  • Electronic_ISBN
    978-1-4244-8417-1
  • Type

    conf

  • DOI
    10.1109/PTC.2011.6019390
  • Filename
    6019390