Title :
Energy-aware distributed tracking in wireless sensor networks
Author :
Roseveare, Nicholas ; Natarajan, Balasubramaniam
Author_Institution :
Dept. of Electr. & Comput. Eng., Kansas State Univ., Manhattan, KS, USA
Abstract :
We consider a wireless sensor network engaged in the task of distributed tracking. Here, multiple remote sensor nodes estimate a physical process (viz., a moving object) and transmit quantized estimates to a fusion center for processing. At the fusion node a BLUE (Best Linear Unbiased Estimation) approach is used to combine the sensor estimates and create a final estimate of the state. In this framework, the uncertainty of the overall estimate is derived and shown to depend on the individual sensor transmit energy and quantization levels. Since power and bandwidth are critically constrained resources in battery operated sensor nodes, we attempt to quantify the tradeoff between the lifetime of the network and the estimation quality over time. A unique feature of this work is that instead of merely allowing a greedy minimization of uncertainty in each time instance, the lifetime of the wireless sensor network is improved by incorporating a heuristic scaling on the operating capability of each node. This heuristic in turn depends on the remaining energy, equivalent to the past history of power and quantization decisions. Simulation results demonstrate the quality of the state estimate as well as the extended lifetime of the network when power and quantization levels are dynamically updated.
Keywords :
estimation theory; wireless sensor networks; BLUE; battery operated sensor nodes; best linear unbiased estimation approach; energy-aware distributed tracking; estimation quality; fusion center; fusion node; greedy minimization; heuristic scaling; individual sensor transmit energy; multiple remote sensor nodes; operating capability; physical process; quantization levels; sensor estimates; wireless sensor networks; Channel estimation; Estimation; Noise; Noise measurement; Quantization; Uncertainty; Wireless sensor networks; convex optimization; distributed estimation; distributed tracking; wireless sensor networks;
Conference_Titel :
Wireless Communications and Networking Conference (WCNC), 2011 IEEE
Conference_Location :
Cancun, Quintana Roo
Print_ISBN :
978-1-61284-255-4
DOI :
10.1109/WCNC.2011.5779190