Title :
Optimal Parameter Estimation for Muskingum Model Using a Modified Particle Swarm Algorithm
Author :
Wang, Wenchuan ; Kang, Yingbin ; Qiu, Lin
Author_Institution :
Fac. of Water conservancy Eng., North China Inst. of Water Conservancy & Hydroelectric Power, Zhengzhou, China
Abstract :
The accurate parameter estimation for Muskingum model is to be useful to give the flood forecasting for flood control in water resources planning and management. Although some methods have been used to estimate the parameters for Muskingum model, an efficient method for parameter estimation in the calibration process is still lacking. In order to reduce the computational amount and improve the computational precision for parameter estimation, a modified particle swarm algorithm (MPSO) is presented for parameter optimization of Muskingum model. The technique found the best parameter values compared to previous results in terms of the sum of least residual absolute value. Empirical results that involve historical data from existed paper reveal the proposed MPSO outperforms other approaches in the literature.
Keywords :
calibration; floods; parameter estimation; particle swarm optimisation; water resources; MPSO; Muskingum model; calibration; flood control; flood forecasting; modified particle swarm algorithm; optimal parameter estimation; water resources management; water resources planning; Floods; Optimization methods; Parameter estimation; Particle swarm optimization; Power engineering and energy; Predictive models; Rivers; Routing; Water conservation; Water resources; Modified Particle Swarm Algorithm; Muskingum Model; Optimal Parameter Estimation;
Conference_Titel :
Computational Science and Optimization (CSO), 2010 Third International Joint Conference on
Conference_Location :
Huangshan, Anhui
Print_ISBN :
978-1-4244-6812-6
Electronic_ISBN :
978-1-4244-6813-3
DOI :
10.1109/CSO.2010.143