• DocumentCode
    3328293
  • Title

    Computing integral points in convex semi-algebraic sets

  • Author

    Khachiyan, Leonid ; Porkolab, Lorant

  • Author_Institution
    Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA
  • fYear
    1997
  • fDate
    20-22 Oct 1997
  • Firstpage
    162
  • Lastpage
    171
  • Abstract
    Let Y be a convex set in Rk defined by polynomial inequalities and equations of degree at most d⩾2 with integer coefficients of binary length l. We show that if Y∩Zk≠θ, then Y contains an integral point of binary length ldO((k4)). For fixed k, our bound implies a polynomial-time algorithm for computing an integral point y∈Y. In particular, we extend Lenstra´s theorem on the polynomial-time solvability of linear integer programming in fixed dimension to semidefinite integer programming
  • Keywords
    computability; computational complexity; integer programming; convex semi-algebraic sets; linear integer programming; polynomial inequalities; polynomial-time algorithm; polynomial-time solvability; semidefinite integer programming; Boolean functions; Computer science; Encoding; Integer linear programming; Integral equations; Lenses; Linear programming; Polynomials;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium on
  • Conference_Location
    Miami Beach, FL
  • ISSN
    0272-5428
  • Print_ISBN
    0-8186-8197-7
  • Type

    conf

  • DOI
    10.1109/SFCS.1997.646105
  • Filename
    646105