• DocumentCode
    3329979
  • Title

    On the 2×2 matrix multiplication

  • Author

    Bshouty, Nader H.

  • Author_Institution
    Dept. of Comput. Sci., Calgary Univ., Alta., Canada
  • fYear
    1991
  • fDate
    3-5 Apr 1991
  • Firstpage
    458
  • Lastpage
    464
  • Abstract
    In SIAM J. Comput., vol.5, p.187-203 (1976), R.L. Probert proved that 15 additive operations are necessary and sufficient to multiply two 2×2 matrices over the binary field by a bilinear algorithm using seven non-scalar multiplications. The author proves this result for arbitrary field. The algorithm of Winograd is used to classify all such algorithms (S. Winograd, 1971)
  • Keywords
    computational complexity; matrix algebra; 2×2 matrices; Winograd; additive operations; arbitrary field; bilinear algorithm; binary field; non-scalar multiplications;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Applied Computing, 1991., [Proceedings of the 1991] Symposium on
  • Conference_Location
    Kansas City, MO
  • Print_ISBN
    0-8186-2136-2
  • Type

    conf

  • DOI
    10.1109/SOAC.1991.143920
  • Filename
    143920