DocumentCode
3329979
Title
On the 2×2 matrix multiplication
Author
Bshouty, Nader H.
Author_Institution
Dept. of Comput. Sci., Calgary Univ., Alta., Canada
fYear
1991
fDate
3-5 Apr 1991
Firstpage
458
Lastpage
464
Abstract
In SIAM J. Comput., vol.5, p.187-203 (1976), R.L. Probert proved that 15 additive operations are necessary and sufficient to multiply two 2×2 matrices over the binary field by a bilinear algorithm using seven non-scalar multiplications. The author proves this result for arbitrary field. The algorithm of Winograd is used to classify all such algorithms (S. Winograd, 1971)
Keywords
computational complexity; matrix algebra; 2×2 matrices; Winograd; additive operations; arbitrary field; bilinear algorithm; binary field; non-scalar multiplications;
fLanguage
English
Publisher
ieee
Conference_Titel
Applied Computing, 1991., [Proceedings of the 1991] Symposium on
Conference_Location
Kansas City, MO
Print_ISBN
0-8186-2136-2
Type
conf
DOI
10.1109/SOAC.1991.143920
Filename
143920
Link To Document