• DocumentCode
    3333769
  • Title

    Spatio-temporal data clustering based on type-2 fuzzy sets and cloud models

  • Author

    Qin, Kun ; Wu, Mengran ; Kong, Lingqiao ; Liu, Yao

  • Author_Institution
    Sch. of Remote Sensing Inf. Eng., Wuhan Univ., Wuhan, China
  • fYear
    2010
  • fDate
    25-30 July 2010
  • Firstpage
    237
  • Lastpage
    240
  • Abstract
    The time series remote sensing data and meteorological satellite data offer new opportunities for understanding the earth system. Spatio-temporal data clustering becomes a kind of idea tool to explore huge data space of spatio-temporal data. Because there are many uncertainties in the huge spatio-temporal data, including fuzziness and randomness, the spatio-temporal clustering methods with uncertainties are needed. Based on type-2 fuzzy sets and cloud models, the paper analyzes the uncertainty of the membership of FCM (fuzzy C-means), and proposes CFFCM (cloud fuzzifier fuzzy C-means) method. Take the time series SST (sea surface temperature) data as examples, the paper applies CFFCM to carry out spatio-temporal clustering analysis, and discovers some interesting patterns.
  • Keywords
    fuzzy set theory; ocean temperature; oceanographic techniques; remote sensing; time series; cloud fuzzifier fuzzy C-means method; cloud models; meteorological satellite; sea surface temperature; spatio-temporal data clustering; time series remote sensing; type-2 fuzzy sets; Clouds; Clustering methods; Correlation; Fuzzy sets; Meteorology; Time series analysis; Uncertainty; SST data; cloud models; spatio-temporal clustering; type-2 fuzzy sets;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
  • Conference_Location
    Honolulu, HI
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4244-9565-8
  • Electronic_ISBN
    2153-6996
  • Type

    conf

  • DOI
    10.1109/IGARSS.2010.5651474
  • Filename
    5651474