• DocumentCode
    3334492
  • Title

    Note on generalization, regularization and architecture selection in nonlinear learning systems

  • Author

    Moody, John E.

  • Author_Institution
    Dept. of Comput. Sci., Yale Univ., New Haven, CT, USA
  • fYear
    1991
  • fDate
    30 Sep-1 Oct 1991
  • Firstpage
    1
  • Lastpage
    10
  • Abstract
    The author proposes a new estimate of generalization performance for nonlinear learning systems called the generalized prediction error ( GPE) which is based upon the notion of the effective number of parameters peff(λ). GPE does not require the use of a test set or computationally intensive cross validation and generalizes previously proposed model selection criteria (such as GCV, FPE, AIC, and PSE) in that it is formulated to include biased, nonlinear models (such as back propagation networks) which may incorporate weight decay or other regularizers. The effective number of parameters peff(λ) depends upon the amount of bias and smoothness (as determined by the regularization parameter λ) in the model, but generally differs from the number of weights p. Construction of an optimal architecture thus requires not just finding the weights wˆλ* which minimize the training function U(λ, w) but also the λ which minimizes GPE(λ)
  • Keywords
    backpropagation; generalisation (artificial intelligence); learning systems; neural nets; signal processing; architecture selection; back propagation networks; biased nonlinear networks; generalization; generalized prediction error; nonlinear learning systems; regularization; training function minimisation; weight decay; Adaptive signal processing; Computer architecture; Computer errors; Computer networks; Computer science; Internet; Learning systems; Noise generators; Supervised learning; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks for Signal Processing [1991]., Proceedings of the 1991 IEEE Workshop
  • Conference_Location
    Princeton, NJ
  • Print_ISBN
    0-7803-0118-8
  • Type

    conf

  • DOI
    10.1109/NNSP.1991.239541
  • Filename
    239541