• DocumentCode
    3347341
  • Title

    ε-Insensitive Modification of Subspace Information Criterion

  • Author

    Zhou, Xuejun

  • Author_Institution
    Fac. of Math. & Inf. Sci., Huanggang Normal Univ., Huanggang, China
  • fYear
    2009
  • fDate
    14-17 Oct. 2009
  • Firstpage
    188
  • Lastpage
    191
  • Abstract
    Evaluating the generalization performance of learning machines without using additional test samples is one of the most important issues in the machine learning community. The subspace information criterion (SIC) is one of the methods for this purpose, which is shown to be an unbiased estimator of the generalization error with finite samples. In this paper, we give ε-insensitive modification of the subspace information criterion (mSIC), it can improve the precision of SIC.
  • Keywords
    generalisation (artificial intelligence); learning (artificial intelligence); ε-insensitive modification; generalization error; learning machine; performance evaluation; subspace information criterion; Degradation; Function approximation; Genetics; Information science; Kernel; Machine learning; Mathematics; Parameter estimation; Silicon carbide; Testing; generalization error; insensitive modification; precision; subspace information criterion;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Genetic and Evolutionary Computing, 2009. WGEC '09. 3rd International Conference on
  • Conference_Location
    Guilin
  • Print_ISBN
    978-0-7695-3899-0
  • Type

    conf

  • DOI
    10.1109/WGEC.2009.60
  • Filename
    5402914