• DocumentCode
    3349219
  • Title

    Semantic segmentation of Polarimetric SAR imagery using Conditional Random Fields

  • Author

    Yang, Wen ; Zhang, Xun ; Chen, Lijun ; Sun, Hong

  • Author_Institution
    Sch. of Electron. Inf., Wuhan Univ., Wuhan, China
  • fYear
    2010
  • fDate
    25-30 July 2010
  • Firstpage
    1593
  • Lastpage
    1596
  • Abstract
    The paper proposes a fast and accurate semantic segmentation approach for a large Polarimetric SAR (PolSAR) image using Conditional Random Fields (CRFs). It efficiently incorporates the polarimetric signatures, texture and intensity features into a unite CRFs model, and employs a fast max-margin training method for parameters learning. Experiments on RadarSat-2 PolSAR data in Flevoland test site demonstrate that our approach achieves precise segmentation results with a few well-selected training samples.
  • Keywords
    radar polarimetry; synthetic aperture radar; PolSAR; conditional random field; polarimetric SAR image; semantic segmentation; Computational modeling; Feature extraction; Image segmentation; Labeling; Pixel; Semantics; Training; conditional random fields; polarimetric SAR; semantic segmentation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
  • Conference_Location
    Honolulu, HI
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4244-9565-8
  • Electronic_ISBN
    2153-6996
  • Type

    conf

  • DOI
    10.1109/IGARSS.2010.5652378
  • Filename
    5652378