DocumentCode
3349219
Title
Semantic segmentation of Polarimetric SAR imagery using Conditional Random Fields
Author
Yang, Wen ; Zhang, Xun ; Chen, Lijun ; Sun, Hong
Author_Institution
Sch. of Electron. Inf., Wuhan Univ., Wuhan, China
fYear
2010
fDate
25-30 July 2010
Firstpage
1593
Lastpage
1596
Abstract
The paper proposes a fast and accurate semantic segmentation approach for a large Polarimetric SAR (PolSAR) image using Conditional Random Fields (CRFs). It efficiently incorporates the polarimetric signatures, texture and intensity features into a unite CRFs model, and employs a fast max-margin training method for parameters learning. Experiments on RadarSat-2 PolSAR data in Flevoland test site demonstrate that our approach achieves precise segmentation results with a few well-selected training samples.
Keywords
radar polarimetry; synthetic aperture radar; PolSAR; conditional random field; polarimetric SAR image; semantic segmentation; Computational modeling; Feature extraction; Image segmentation; Labeling; Pixel; Semantics; Training; conditional random fields; polarimetric SAR; semantic segmentation;
fLanguage
English
Publisher
ieee
Conference_Titel
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location
Honolulu, HI
ISSN
2153-6996
Print_ISBN
978-1-4244-9565-8
Electronic_ISBN
2153-6996
Type
conf
DOI
10.1109/IGARSS.2010.5652378
Filename
5652378
Link To Document