• DocumentCode
    3351046
  • Title

    An ANN approach to multisensor multitarget tracking

  • Author

    Qiu, Bensheng ; Zhang, Diancheng

  • Author_Institution
    Hefei Univ. of Technol., China
  • fYear
    1994
  • fDate
    5-9 Dec 1994
  • Firstpage
    410
  • Lastpage
    413
  • Abstract
    In this paper, the multisensor multitarget tracking problem is considered. The data association is most important and difficult in the multitarget tracking environment. We first formulate it with the maximum likelihood method, and then we use a random stochastic ANN and modified mean field annealing to solve the optimal solution. Compared with other nonlinear optimization algorithms, this method can achieve the global optimal solution and it needs fewer iteration times
  • Keywords
    maximum likelihood detection; neural nets; sensor fusion; simulated annealing; target tracking; tracking; data association; global optimal solution; maximum likelihood method; mean field annealing; multisensor multitarget tracking; random stochastic neural nets; Annealing; Artificial intelligence; Direction of arrival estimation; Maximum likelihood estimation; Optimization methods; Radar tracking; Sonar; State estimation; Stochastic processes; Target tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Technology, 1994., Proceedings of the IEEE International Conference on
  • Conference_Location
    Guangzhou
  • Print_ISBN
    0-7803-1978-8
  • Type

    conf

  • DOI
    10.1109/ICIT.1994.467085
  • Filename
    467085