• DocumentCode
    335375
  • Title

    Using genetic algorithms to estimate the optimum width parameter in radial basis function networks

  • Author

    Kuo, L.E. ; Melsheimer, S.S.

  • Author_Institution
    Dept. of Chem. Eng., Clemson Univ., SC, USA
  • Volume
    2
  • fYear
    1994
  • fDate
    29 June-1 July 1994
  • Firstpage
    1368
  • Abstract
    Radial basis function (RBF) networks are an attractive tool for modeling dynamic systems for control purposes. This paper presents a new methodology to find the optimum width parameters in the RBF network model. This methodology, which combines genetic algorithms and the orthogonal least squares method, is described in detail. Finally, two examples illustrate the usefulness of this method.
  • Keywords
    feedforward neural nets; genetic algorithms; least squares approximations; parameter estimation; dynamic systems; genetic algorithms; optimum width parameter; orthogonal least squares method; radial basis function networks; Chemical engineering; Control system synthesis; Euclidean distance; Feedforward neural networks; Genetic algorithms; Intelligent networks; Learning systems; Neural networks; Radial basis function networks; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1994
  • Print_ISBN
    0-7803-1783-1
  • Type

    conf

  • DOI
    10.1109/ACC.1994.752283
  • Filename
    752283