DocumentCode :
3356025
Title :
A non-stationary Hidden Markov Model of multiview video traffic
Author :
Rossi, Lorenzo ; Chakareski, Jacob ; Frossard, Pascal ; Colonnese, Stefania
Author_Institution :
INFOCOM Dept., Sapienza Univ. di Roma, Rome, Italy
fYear :
2010
fDate :
26-29 Sept. 2010
Firstpage :
2921
Lastpage :
2924
Abstract :
Multiview video is increasingly getting attention due to emerging applications such as 3DTV and immersive teleconferencing. In this paper, we present a non-stationary Hidden Markov Model (HMM) for characterizing the data rate of compressed multiview content. The states of the model correspond to different video activity levels and exhibit a Poisson state duration distribution. We derive a stable maximum likelihood algorithm for estimating the parameters of our multiview traffic model. Synthetic data generated by the model exhibits statistics that closely match those of actual multiview data. In addition, we demonstrate the high accuracy of the model in two multiview streaming applications by evaluating the frame loss rate of a constrained network buffer fed by actual and synthetic data.
Keywords :
Poisson distribution; hidden Markov models; maximum likelihood estimation; telecommunication traffic; video coding; video streaming; 3DTV; HMM; Poisson state duration distribution; frame loss rate evaluation; immersive teleconferencing; multiview streaming; multiview video traffic model; nonstationary hidden Markov model; parameter estimation; stable maximum likelihood algorithm; synthetic data; Biological system modeling; Hidden Markov models; Histograms; Markov processes; Numerical models; Streaming media; Switches;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1522-4880
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2010.5652844
Filename :
5652844
Link To Document :
بازگشت