DocumentCode
3356293
Title
Guarding networks through heterogeneous mobile guards
Author
Abbas, Waseem ; Bhatia, Sajal ; Koutsoukos, Xenofon
Author_Institution
Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA
fYear
2015
fDate
1-3 July 2015
Firstpage
3428
Lastpage
3433
Abstract
In this article, the issue of guarding multi-agent systems against a sequence of intruder attacks through mobile heterogeneous guards (guards with different ranges) is discussed. The article makes use of graph theoretic abstractions of such systems in which agents are the nodes of a graph and edges represent interconnections between agents. Guards represent specialized mobile agents on specific nodes with capabilities to successfully detect and respond to an attack within their guarding range. Using this abstraction, the article addresses the problem in the context of eternal security problem in graphs. Eternal security refers to securing all the nodes in a graph against an infinite sequence of intruder attacks by a certain minimum number of guards. This paper makes use of heterogeneous guards and addresses all the components of the eternal security problem including the number of guards, their deployment and movement strategies. In the proposed solution, a graph is decomposed into clusters and a guard with appropriate range is then assigned to each cluster. These guards ensure that all nodes within their corresponding cluster are being protected at all times, thereby achieving the eternal security in the graph.
Keywords
graph theory; mobile agents; multi-agent systems; network theory (graphs); eternal security problem; graph theoretic abstractions; guarding multiagent systems; guarding networks; heterogeneous mobile guards; intruder attacks; mobile agents; mobile heterogeneous guards; movement strategies; Clustering algorithms; Image edge detection; Mobile communication; Partitioning algorithms; Radiation detectors; Robot sensing systems; Security;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference (ACC), 2015
Conference_Location
Chicago, IL
Print_ISBN
978-1-4799-8685-9
Type
conf
DOI
10.1109/ACC.2015.7171861
Filename
7171861
Link To Document