• DocumentCode
    336244
  • Title

    Identification of noncausal nonminimum phase AR models using higher-order statistics

  • Author

    Tora, H. ; Wilkes, D.M.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Vanderbilt Univ., Nashville, TN, USA
  • Volume
    3
  • fYear
    1999
  • fDate
    15-19 Mar 1999
  • Firstpage
    1617
  • Abstract
    In this paper, we address the problem of estimating the parameters of a noncausal autoregressive (AR) signal from estimates of the higher-order cumulants of noisy observations. The proposed family of techniques uses both 3rd-order and 4th order cumulants of the observed output data. Consequently, at low SNR, they provide superior performance to methods based on autocorrelations. The measurement noise is assumed to be Gaussian and may be colored. The AR model parameters here are directly related to the solution of a generalized eigenproblem. The performance is illustrated by means of simulation examples
  • Keywords
    Gaussian noise; autoregressive processes; eigenvalues and eigenfunctions; higher order statistics; parameter estimation; signal processing; 3rd order cumulants; 4th order cumulants; AR model parameters; Gaussian noise; colored noise; generalized eigenproblem; higher-order cumulants; higher-order statistics; identification; low SNR; noisy observations; noncausal autoregressive signal; noncausal nonminimum phase AR models; parameter estimation; Additive noise; Autocorrelation; Gaussian noise; Gaussian processes; Higher order statistics; Parameter estimation; Phase estimation; Phase noise; Signal processing; Signal to noise ratio;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
  • Conference_Location
    Phoenix, AZ
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-5041-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.1999.756299
  • Filename
    756299