• DocumentCode
    336248
  • Title

    Sampling on unions of non-commensurate lattices via complex interpolation theory

  • Author

    Casey, Stephen D. ; Sadler, Brian M.

  • Author_Institution
    Math./Stat. Dept., American Univ., Washington, DC, USA
  • Volume
    3
  • fYear
    1999
  • fDate
    15-19 Mar 1999
  • Firstpage
    1641
  • Abstract
    Solutions to the analytic Bezout equation associated with certain multichannel deconvolution problems are interpolation problems on unions of non-commensurate lattices. These solutions provide insight into how one can develop general sampling schemes on properly chosen non-commensurate lattices. We give specific examples of non-commensurate lattices and use a generalization of B.Ya. Levin´s (1996) sine-type functions to develop interpolating formulae on these lattices
  • Keywords
    deconvolution; interpolation; lattice theory; signal sampling; analytic Bezout equation; complex interpolation theory; general sampling schemes; multichannel deconvolution problems; noncommensurate lattices union; sine-type functions; Convolution; Convolvers; Deconvolution; Equations; Interpolation; Lattices; Nonlinear filters; Sampling methods; Sensor systems; Signal sampling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
  • Conference_Location
    Phoenix, AZ
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-5041-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.1999.756305
  • Filename
    756305