DocumentCode :
3362665
Title :
Hierarchical density estimation for image classification
Author :
Li, Zhen ; Zhou, Xi ; Huang, Thomas S.
Author_Institution :
Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
fYear :
2010
fDate :
26-29 Sept. 2010
Firstpage :
2297
Lastpage :
2300
Abstract :
This paper presents a novel hierarchical density estimation approach for image classification. We first build a collection of randomized decision trees in a discriminative way to split the feature space into small regions. Then for each region, class-conditional Gaussians are learnt to characterize the “local” distribution of feature vectors falling into that region. The parameters of the Gaussians are reliably estimated through hierarchical maximum a posteriori (MAP) estimation and smoothed across multiple randomized trees in the forest. Compared with the widely-used Gaussian Mixture Models (GMM), our new approach not only yields more reliable parameter estimation, but also greatly reduces the computational cost at the testing stage. Experiments on scene classification demonstrate the effectiveness and efficiency of our new approach.
Keywords :
image classification; parameter estimation; Gaussian Mixture Models; class-conditional Gaussians; feature vectors; hierarchical density estimation; hierarchical maximum a posteriori estimation; image classification; local distribution; parameter estimation; randomized decision trees; scene classification; smoothed across multiple randomized trees; Conferences; Decision trees; Histograms; Maximum likelihood estimation; Training; Training data; Decision Tree; Hierarchical MAP Estimation; Image Classification; Random Forest;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1522-4880
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2010.5653284
Filename :
5653284
Link To Document :
بازگشت