• DocumentCode
    3364338
  • Title

    Nonstationary signal estimation using time-varying ARMA models

  • Author

    Mrad, R. Ben ; Fassois, S.D. ; Levitt, J.A.

  • Author_Institution
    Ford Motor Co., Dearborn, MI, USA
  • fYear
    1994
  • fDate
    25-28 Oct 1994
  • Firstpage
    433
  • Lastpage
    436
  • Abstract
    A parametric approach for the estimation of nonstationary signals is presented. The approach is based on time-varying autoregressive moving average (TARMA) signal representations. The TARMA model coefficients vary in a deterministically organized way and are estimated using a novel fully linear parameter estimation method. The estimation algorithm is based on the properties of the TARMA models that allow their manipulations using operations restricted to the time domain. It is shown that the estimation method is computationally simple, overcomes local extrema problems associated with nonlinear search procedures, and eliminates the need for initial guesses of the parameter values
  • Keywords
    autoregressive moving average processes; parameter estimation; signal representation; spectral analysis; time-domain analysis; time-varying systems; TARMA model coefficients; estimation algorithm; linear parameter estimation method; nonstationary signal estimation; signal representations; spectral representation; time domain operations; time-varying ARMA models; time-varying autoregressive moving average; Autoregressive processes; Convergence; Optimization methods; Parameter estimation; Polynomials; Signal generators; Signal processing; Signal representations; Vehicles; White noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Time-Frequency and Time-Scale Analysis, 1994., Proceedings of the IEEE-SP International Symposium on
  • Conference_Location
    Philadelphia, PA
  • Print_ISBN
    0-7803-2127-8
  • Type

    conf

  • DOI
    10.1109/TFSA.1994.467321
  • Filename
    467321