• DocumentCode
    3364633
  • Title

    On invariant subspaces of Hamiltonian matrices

  • Author

    Mehrmann, Volker ; Xu, Hongguo

  • Author_Institution
    Fakultat fur Math., Tech. Univ. Chemnitz, Germany
  • fYear
    1999
  • fDate
    1999
  • Firstpage
    40
  • Lastpage
    45
  • Abstract
    The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and sufficient conditions are given in terms of the Jordan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases: existence and uniqueness results for Hermitian solutions of continuous time algebraic Riccati equations
  • Keywords
    Riccati equations; eigenvalues and eigenfunctions; matrix algebra; Hamiltonian matrices; Jordan structure; Riccati equations; existence; imaginary eigenvalues; invariant subspaces; necessary conditions; sufficient conditions; uniqueness; Automated highways; DH-HEMTs; Eigenvalues and eigenfunctions; Filtering; Image analysis; Kalman filters; Lagrangian functions; Newton method; Riccati equations; Sufficient conditions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Aided Control System Design, 1999. Proceedings of the 1999 IEEE International Symposium on
  • Conference_Location
    Kohala Coast, HI
  • Print_ISBN
    0-7803-5500-8
  • Type

    conf

  • DOI
    10.1109/CACSD.1999.808621
  • Filename
    808621