• DocumentCode
    3365716
  • Title

    Improved filter estimation method applied in zero velocity update for SINS

  • Author

    Ben, Yueyang ; Yin, Guisheng ; Gao, Wei ; Sun, Feng

  • Author_Institution
    Coll. of Comput. Sci. & Technol., Harbin Eng. Univ., Harbin, China
  • fYear
    2009
  • fDate
    9-12 Aug. 2009
  • Firstpage
    3375
  • Lastpage
    3380
  • Abstract
    Zero Velocity Update (ZUPT) utilizes the zero velocity condition for stationary Strapdown Inertial Navigation System (SINS), executes navigation errors estimation and emendation to control SINS position growth. The improved filter estimation ZUPT is proposed in this paper. Two technologies, separate-bias Kalman filter and yaw error rapid estimation, are applied in the proposed method. Separate-bias Kalman filter solve the divergence problem for setting a mass of Kalman filter state variances. And the yaw error rapid estimation can calculate the unobservable yaw error in periodic ZUPT. Simulation results show that the estimations of attitude errors, yaw error and position errors converge to the right values quickly in the proposed ZUPT, and the position accuracy is improved effectively compared to the conventional one.
  • Keywords
    Kalman filters; error analysis; navigation; SINS; ZUPT; divergence problem; filter estimation method; navigation errors estimation; position errors; separate-bias kalman filter; stationary strapdown inertial navigation system; yaw error rapid estimation; zero velocity update; Educational institutions; Error analysis; Error correction; Estimation error; Filters; Frequency estimation; Global Positioning System; Inertial navigation; Silicon compounds; Velocity control; SINS; Separate-bias; ZUPT; kalman filter;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Mechatronics and Automation, 2009. ICMA 2009. International Conference on
  • Conference_Location
    Changchun
  • Print_ISBN
    978-1-4244-2692-8
  • Electronic_ISBN
    978-1-4244-2693-5
  • Type

    conf

  • DOI
    10.1109/ICMA.2009.5246331
  • Filename
    5246331