DocumentCode :
3366612
Title :
Kernel parameter dependence in spatial factor analysis
Author :
Nielsen, Allan A.
Author_Institution :
DTU Space - Nat. Space Inst., Tech. Univ. of Denmark, Lyngby, Denmark
fYear :
2010
fDate :
25-30 July 2010
Firstpage :
4240
Lastpage :
4243
Abstract :
Principal component analysis (PCA) is often used for general feature generation and linear orthogonalization or compression by dimensionality reduction of correlated multivariate data, see Jolliffe for a comprehensive description of PCA and related techniques. Schölkopf et al. introduce kernel PCA. Shawe-Taylor and Cristianini is an excellent reference for kernel methods in general. Bishop and Press et al. describe kernel methods among many other subjects. The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply a kernel version of maximum autocorrelation factor (MAF) analysis to irregularly sampled stream sediment geochemistry data from South Greenland and illustrate the dependence of the kernel width. The 2,097 samples each covering on average 5 km2 are analyzed chemically for the content of 41 elements.
Keywords :
correlation methods; geophysical signal processing; principal component analysis; correlated multivariate data; dimensionality reduction; kernel PCA; kernel function; kernel parameter dependence; kernel width; linear analysis; linear orthogonalization; maximum autocorrelation factor analysis; nonlinearity; principal component analysis; spatial factor analysis; stream sediment geochemistry data; Correlation; Eigenvalues and eigenfunctions; Geology; Green products; Kernel; Presses; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
ISSN :
2153-6996
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2010.5653545
Filename :
5653545
Link To Document :
بازگشت