• DocumentCode
    337702
  • Title

    Least squares identification using μ-Markov parameterizations

  • Author

    Van Pelt, Tobin H. ; Bernstein, Dennis S.

  • Author_Institution
    Dept. of Aerosp. Eng., Michigan Univ., MI, USA
  • Volume
    1
  • fYear
    1998
  • fDate
    1998
  • Firstpage
    618
  • Abstract
    In this paper we introduce μ-Markov parameterizations for use in least squares estimation. These parameterizations explicitly contain the system impulse response parameters, or Markov parameters, and, under very general noise models, the least squares estimates of the Markov parameters are consistent regardless of model order choice when the input is white noise. A numerical example is given to illustrate this result
  • Keywords
    Markov processes; least squares approximations; parameter estimation; μ-Markov parameterizations; general noise models; least squares estimation; least squares identification; model order choice; system impulse response parameters; white noise; Convergence; Finite impulse response filter; Least squares approximation; Least squares methods; Parameter estimation; Signal generators; Stochastic systems; Transfer functions; White noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
  • Conference_Location
    Tampa, FL
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-4394-8
  • Type

    conf

  • DOI
    10.1109/CDC.1998.760748
  • Filename
    760748