Title :
Fuzzy neural network classification design using support vector machine
Author :
Lin, Chin-Teng ; Yeh, Chang-Moun ; Hsu, Chun-fei
Author_Institution :
Dept. of Electr. & Control Eng., National Chiao-Tung Univ., Hsinchu, Taiwan
Abstract :
Fuzzy neural networks (FNNs) for pattern classification usually use the backpropagation or C-cluster type learning algorithms to learn the parameters of the fuzzy rules and membership functions from the training data. However, such kinds of learning algorithms usually cannot minimize the empirical risk (training error) and expected risk (testing error) simultaneously, and thus cannot reach a good classification performance in the testing phase. To tackle this drawback, a support-vector-based fuzzy neural network classification (SVFNNC) is proposed. The SVFNNC combines the superior classification power of support vector machine (SVM) in high reasoning of FNN in handling uncertainty information. The learning algorithm consists of two learning phases. In the phase 1, the fuzzy rules and membership functions are automatically determined by the clustering principle. In the phase 2, the parameters of FNN are calculated by the SVM with the proposed adaptive fuzzy kernel function. To investigate the effectiveness of the proposed SVFNNC, it is applied to the iris, vehicle and dna datasets. Experimental results show that the proposed SVFNNC can achieve good classification performance with drastically reduced number of fuzzy kernel functions.
Keywords :
backpropagation; fuzzy neural nets; pattern classification; support vector machines; uncertainty handling; C-cluster learning; DNA datasets; adaptive fuzzy kernel function; backpropagation learning; classification performance; clustering principles; fuzzy rules; handling uncertainty information; iris datasets; learning phases; membership functions; pattern classification; superior classification power; support vector machine; support-vector-based fuzzy neural network classification; testing error; training data; training error; vehicle datasets; Backpropagation algorithms; Clustering algorithms; Fuzzy neural networks; Kernel; Pattern classification; Support vector machine classification; Support vector machines; Testing; Training data; Uncertainty;
Conference_Titel :
Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on
Print_ISBN :
0-7803-8251-X
DOI :
10.1109/ISCAS.2004.1329910