DocumentCode :
3382678
Title :
Array covariance error measurement in adaptive source parameter estimation
Author :
Pérez-Neira, Ana ; Lagunas, M.A.
Author_Institution :
TSC Dept., ETSI Telecom, Barcelona, Spain
fYear :
1992
fDate :
7-9 Oct 1992
Firstpage :
90
Lastpage :
93
Abstract :
The small error approximation is used to derive a linear relationship between the source parameters (i.e. power levels and directions of arrival) and a measurement of the covariance error matrix, defined as the difference between a nonparametric consistent estimate of the spectral density matrix and a covariance model from the scenario parameters. The resulting framework allows the design of a Kalman-like algorithm which provides a simultaneous and adaptive estimation of the source parameter, no matter what the source waveform or modulation. Good performance is expected, mainly in the presence of sensors malfunctioning, low signal-to-noise ratio, etc
Keywords :
Kalman filters; adaptive filters; array signal processing; parameter estimation; Kalman-like algorithm; adaptive source parameter estimation; array processing; covariance error matrix; directions of arrival; performance; power levels; small error approximation; spectral density matrix; Adaptive arrays; Adaptive estimation; Adaptive filters; Apertures; Covariance matrix; Direction of arrival estimation; Frequency estimation; Maximum likelihood estimation; Parameter estimation; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal and Array Processing, 1992. Conference Proceedings., IEEE Sixth SP Workshop on
Conference_Location :
Victoria, BC
Print_ISBN :
0-7803-0508-6
Type :
conf
DOI :
10.1109/SSAP.1992.246855
Filename :
246855
Link To Document :
بازگشت