• DocumentCode
    3390159
  • Title

    Sparse P-hard sets yield space-efficient algorithms

  • Author

    Ogihara, Mitsunori

  • Author_Institution
    Dept. of Comput. Sci., Rochester Univ., NY, USA
  • fYear
    1995
  • fDate
    23-25 Oct 1995
  • Firstpage
    354
  • Lastpage
    361
  • Abstract
    J. Hartmanis (1978) conjectured that there exist no sparse complete sets for P under logspace many-one reductions. In this paper, in support of the conjecture, it is shown that if P has sparse hard sets under logspace many-one reductions, then P⊆DSPACE[log2n]. The result follows from a more general statement: if P has 2polylog sparse hard sets under poly-logarithmic space-computable many-one reductions, then P⊆DSPACE[polylog]
  • Keywords
    computational complexity; logspace many-one reductions; poly-logarithmic space-computable many-one reductions; space-efficient algorithms; sparse P-hard sets; Computer science; Density functional theory; Polynomials;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on
  • Conference_Location
    Milwaukee, WI
  • ISSN
    0272-5428
  • Print_ISBN
    0-8186-7183-1
  • Type

    conf

  • DOI
    10.1109/SFCS.1995.492491
  • Filename
    492491