DocumentCode
3402658
Title
Maximum likelihood parameter estimation in probabilistic fuzzy classifiers
Author
Waltman, Ludo ; Kaymak, Uzay ; Van den Berg, Jan
Author_Institution
Fac. of Econ., Erasmus Univ. Rotterdam
fYear
2005
fDate
25-25 May 2005
Firstpage
1098
Lastpage
1103
Abstract
Probabilistic fuzzy systems make it possible to model linguistic uncertainty and probabilistic uncertainty in a single system. This paper is concerned with the estimation of the parameters in probabilistic fuzzy classifiers. The purpose of the paper is to introduce a new method that simultaneously estimates all the parameters in a probabilistic fuzzy classifier. The method uses a maximum likelihood criterion and a gradient-based optimization algorithm. The performance of the method is evaluated on two benchmark data sets. The method is compared with a sequential parameter estimation method used in previous publications. Also, a comparison with an alternative method from the literature is made
Keywords
fuzzy set theory; fuzzy systems; gradient methods; maximum likelihood estimation; pattern classification; probability; gradient-based optimization; linguistic uncertainty; maximum likelihood parameter estimation; probabilistic fuzzy classifiers; probabilistic fuzzy systems; probabilistic uncertainty; sequential parameter estimation; Clustering algorithms; Diseases; Fuzzy systems; Maximum likelihood estimation; Medical treatment; Optimization methods; Parameter estimation; Probability distribution; Stochastic processes; Uncertainty;
fLanguage
English
Publisher
ieee
Conference_Titel
Fuzzy Systems, 2005. FUZZ '05. The 14th IEEE International Conference on
Conference_Location
Reno, NV
Print_ISBN
0-7803-9159-4
Type
conf
DOI
10.1109/FUZZY.2005.1452548
Filename
1452548
Link To Document