• DocumentCode
    3402658
  • Title

    Maximum likelihood parameter estimation in probabilistic fuzzy classifiers

  • Author

    Waltman, Ludo ; Kaymak, Uzay ; Van den Berg, Jan

  • Author_Institution
    Fac. of Econ., Erasmus Univ. Rotterdam
  • fYear
    2005
  • fDate
    25-25 May 2005
  • Firstpage
    1098
  • Lastpage
    1103
  • Abstract
    Probabilistic fuzzy systems make it possible to model linguistic uncertainty and probabilistic uncertainty in a single system. This paper is concerned with the estimation of the parameters in probabilistic fuzzy classifiers. The purpose of the paper is to introduce a new method that simultaneously estimates all the parameters in a probabilistic fuzzy classifier. The method uses a maximum likelihood criterion and a gradient-based optimization algorithm. The performance of the method is evaluated on two benchmark data sets. The method is compared with a sequential parameter estimation method used in previous publications. Also, a comparison with an alternative method from the literature is made
  • Keywords
    fuzzy set theory; fuzzy systems; gradient methods; maximum likelihood estimation; pattern classification; probability; gradient-based optimization; linguistic uncertainty; maximum likelihood parameter estimation; probabilistic fuzzy classifiers; probabilistic fuzzy systems; probabilistic uncertainty; sequential parameter estimation; Clustering algorithms; Diseases; Fuzzy systems; Maximum likelihood estimation; Medical treatment; Optimization methods; Parameter estimation; Probability distribution; Stochastic processes; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems, 2005. FUZZ '05. The 14th IEEE International Conference on
  • Conference_Location
    Reno, NV
  • Print_ISBN
    0-7803-9159-4
  • Type

    conf

  • DOI
    10.1109/FUZZY.2005.1452548
  • Filename
    1452548