DocumentCode
3402697
Title
Model order, convergence rates and information content in noisy partial realizations
Author
DeBrunner, V.E. ; Beex, A. A Louis
Author_Institution
Sch. of Electr. Eng. & Comput. Sci., Oklahoma Univ., Norman, OK, USA
fYear
1991
fDate
14-17 May 1991
Firstpage
432
Abstract
It is shown that convergence rates of recursive algorithms for parameter estimation from noisy partial realizations depend on the structure of the chosen model. The model is analyzed by considering information unique to the parameterization-the sensitivity and interconnectedness of the model parameters. The convergence analysis is independent of model order. Useful information about relative convergence rates can be inferred even when the model order does not match that of the identified system
Keywords
convergence of numerical methods; parameter estimation; convergence analysis; convergence rates; information content; model order; noisy partial realizations; parameter estimation; recursive algorithms; Computer science; Convergence; Extraterrestrial measurements; Fasteners; Fluctuations; Parameter estimation; Predictive models; Stochastic processes; Time factors; Time measurement;
fLanguage
English
Publisher
ieee
Conference_Titel
Circuits and Systems, 1991., Proceedings of the 34th Midwest Symposium on
Conference_Location
Monterey, CA
Print_ISBN
0-7803-0620-1
Type
conf
DOI
10.1109/MWSCAS.1991.252211
Filename
252211
Link To Document