• DocumentCode
    3402697
  • Title

    Model order, convergence rates and information content in noisy partial realizations

  • Author

    DeBrunner, V.E. ; Beex, A. A Louis

  • Author_Institution
    Sch. of Electr. Eng. & Comput. Sci., Oklahoma Univ., Norman, OK, USA
  • fYear
    1991
  • fDate
    14-17 May 1991
  • Firstpage
    432
  • Abstract
    It is shown that convergence rates of recursive algorithms for parameter estimation from noisy partial realizations depend on the structure of the chosen model. The model is analyzed by considering information unique to the parameterization-the sensitivity and interconnectedness of the model parameters. The convergence analysis is independent of model order. Useful information about relative convergence rates can be inferred even when the model order does not match that of the identified system
  • Keywords
    convergence of numerical methods; parameter estimation; convergence analysis; convergence rates; information content; model order; noisy partial realizations; parameter estimation; recursive algorithms; Computer science; Convergence; Extraterrestrial measurements; Fasteners; Fluctuations; Parameter estimation; Predictive models; Stochastic processes; Time factors; Time measurement;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 1991., Proceedings of the 34th Midwest Symposium on
  • Conference_Location
    Monterey, CA
  • Print_ISBN
    0-7803-0620-1
  • Type

    conf

  • DOI
    10.1109/MWSCAS.1991.252211
  • Filename
    252211