Title :
Optimizing network parameters for Arabic speakers recognition
Author :
Hussain, Sattar J. ; Mohamed, Faisal A.
Author_Institution :
Dept. of Electr. Eng., Omar Al-Mukhtar Univ., El-Beida, Libya
Abstract :
The aim of the work is to study the effect of the number of nodes in the hidden layer, learning rate, and input level offset on the recognition rate, speed of network convergence (learning time), and network complexity of a neural network for speaker recognition. We investigated the number of hidden nodes that give both a high recognition rate and a relatively simple network. A high recognition rate (more than 97) was achieved when we used 30 nodes at the hidden layer. The results show that the recognition rate (number of correct answers) increases with an increasing of hidden nodes. However, it changes slightly after reaching a value of 97.6% for 30 hidden nodes where no significant increase occurred. Also we look to optimize other parameters to achieve both high recognition rate and fewer learning iterations.
Keywords :
natural languages; neural nets; speaker recognition; Arabic speaker recognition; hidden layer; hidden nodes; input level; learning iterations; learning rate; network complexity; network convergence; network parameter optimization; neural networks; recognition rate; Convergence; Cost function; Databases; Knee; Lakes; Multi-layer neural network; Neural networks; Speaker recognition; Training data; Yttrium;
Conference_Titel :
SICE 2002. Proceedings of the 41st SICE Annual Conference
Print_ISBN :
0-7803-7631-5
DOI :
10.1109/SICE.2002.1195516