Title :
FDTD study of surface plasmons and perfect tunneling of power in parallel-plate waveguides
Author :
Gonzalez, Oscar ; Grande, Ana ; Pereda, José A. ; Vegas, Ángel
Author_Institution :
Dept. de Ing. de Comun., Univ. of Cantabria, Santander, Spain
Abstract :
Perfect tunneling of power through waveguides can be achieved by taking advantage of surface plasmon conditions. A few years ago, a waveguide filled by metamaterials with negative parameters was proposed in order to achieve such perfect tunneling behaviour. The aim of this communication is to both analyze and visualize in the time domain a structure presenting both a plasmonic resonance and perfect tunneling behaviour. This work is carried out by using the Finite Difference Time Domain (FDTD) formulation presented in. As shown here, a waveguide filled with a dispersive material is necessary, but it is not mandatory for this material to be DNG. In addition, the main advantage of the FDTD formulation used here is that it is able to directly incorporate any arbitrary high-order frequency dependence of the constitutive parameters, allowing a realistic characterization of high-order dispersive materials.
Keywords :
dispersive media; electromagnetic wave propagation; finite difference time-domain analysis; metamaterials; plasmonics; surface plasmon resonance; tunnelling; waveguide theory; FDTD; finite difference time domain analysis; high order dispersive materials; metamaterials; parallel plate waveguides; perfect tunneling; plasmonic resonance; surface plasmon; Dispersion; Finite difference methods; Frequency dependence; Metamaterials; Plasmons; Resonance; Surface waves; Time domain analysis; Tunneling; Visualization;
Conference_Titel :
Microwave Symposium (MMS), 2009 Mediterrannean
Conference_Location :
Tangiers
Print_ISBN :
978-1-4244-4664-3
Electronic_ISBN :
978-1-4244-4665-0
DOI :
10.1109/MMS.2009.5409807