• DocumentCode
    3420180
  • Title

    A (μ, λ) evolutionary and particle swarm hybrid algorithm, with an application to dinosaur gait optimization

  • Author

    Matsumura, Yoshiyuki ; Kobayashi, Akihiro ; Sugiyama, Kiyotaka ; Pataky, Todd ; Yasuda, Toshiyuki ; Ohkura, Kazuhiro ; Sellers, Bill

  • Author_Institution
    Shinshu Univ., Nagano, Japan
  • fYear
    2013
  • fDate
    13-13 July 2013
  • Firstpage
    89
  • Lastpage
    93
  • Abstract
    A hybrid evolutionary algorithm based on (μ, λ) evolutionary algorithms and particle swarm optimization is proposed for the numerical optimization problems. In order to find out the performance of the hybrid, the computer experiment is tested on dinosaur´s gait generation problem. Experimental results show that hybrid optimization finds maximum fitness and is faster in the first phase.
  • Keywords
    biology; evolutionary computation; particle swarm optimisation; (μ,λ) evolutionary algorithm; dinosaur gait generation problem; dinosaur gait optimization; numerical optimization problems; particle swarm algorithm; Dinosaurs; Muscles; Optimization; Particle swarm optimization; Sociology; Statistics; (μ, λ) evolutionary algorithms and particle swarm optimization; A hybrid evolutionary algorithm; dinosaur´s gait generation problem;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence & Applications (IWCIA), 2013 IEEE Sixth International Workshop on
  • Conference_Location
    Hiroshima
  • ISSN
    1883-3977
  • Print_ISBN
    978-1-4673-5725-8
  • Type

    conf

  • DOI
    10.1109/IWCIA.2013.6624791
  • Filename
    6624791