DocumentCode
3420180
Title
A (μ, λ) evolutionary and particle swarm hybrid algorithm, with an application to dinosaur gait optimization
Author
Matsumura, Yoshiyuki ; Kobayashi, Akihiro ; Sugiyama, Kiyotaka ; Pataky, Todd ; Yasuda, Toshiyuki ; Ohkura, Kazuhiro ; Sellers, Bill
Author_Institution
Shinshu Univ., Nagano, Japan
fYear
2013
fDate
13-13 July 2013
Firstpage
89
Lastpage
93
Abstract
A hybrid evolutionary algorithm based on (μ, λ) evolutionary algorithms and particle swarm optimization is proposed for the numerical optimization problems. In order to find out the performance of the hybrid, the computer experiment is tested on dinosaur´s gait generation problem. Experimental results show that hybrid optimization finds maximum fitness and is faster in the first phase.
Keywords
biology; evolutionary computation; particle swarm optimisation; (μ,λ) evolutionary algorithm; dinosaur gait generation problem; dinosaur gait optimization; numerical optimization problems; particle swarm algorithm; Dinosaurs; Muscles; Optimization; Particle swarm optimization; Sociology; Statistics; (μ, λ) evolutionary algorithms and particle swarm optimization; A hybrid evolutionary algorithm; dinosaur´s gait generation problem;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational Intelligence & Applications (IWCIA), 2013 IEEE Sixth International Workshop on
Conference_Location
Hiroshima
ISSN
1883-3977
Print_ISBN
978-1-4673-5725-8
Type
conf
DOI
10.1109/IWCIA.2013.6624791
Filename
6624791
Link To Document