DocumentCode :
3423274
Title :
Detecting scareware by mining variable length instruction sequences
Author :
Shahzad, R.K. ; Lavesson, Nils
Author_Institution :
Sch. of Comput., Blekinge Inst. of Technol., Karlskrona, Sweden
fYear :
2011
fDate :
15-17 Aug. 2011
Firstpage :
1
Lastpage :
8
Abstract :
Scareware is a recent type of malicious software that may pose financial and privacy-related threats to novice users. Traditional countermeasures, such as anti-virus software, require regular updates and often lack the capability of detecting novel (unseen) instances. This paper presents a scareware detection method that is based on the application of machine learning algorithms to learn patterns in extracted variable length opcode sequences derived from instruction sequences of binary files. The patterns are then used to classify software as legitimate or scareware but they may also reveal interpretable behavior that is unique to either type of software. We have obtained a large number of real world scareware applications and designed a data set with 550 scareware instances and 250 benign instances. The experimental results show that several common data mining algorithms are able to generate accurate models from the data set. The Random Forest algorithm is shown to outperform the other algorithms in the experiment. Essentially, our study shows that, even though the differences between scareware and legitimate software are subtler than between, say, viruses and legitimate software, the same type of machine learning approach can be used in both of these dissimilar cases.
Keywords :
data mining; invasive software; learning (artificial intelligence); pattern classification; sequences; binary files; data mining algorithms; machine learning algorithms; malicious software; privacy-related threats; random forest algorithm; scareware detection method; variable length instruction sequences; Classification algorithms; Data mining; Feature extraction; Malware; Software; Software algorithms; Vocabulary; Classification; Instruction Sequence; Scareware;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Security South Africa (ISSA), 2011
Conference_Location :
Johannesburg
Print_ISBN :
978-1-4577-1481-8
Type :
conf
DOI :
10.1109/ISSA.2011.6027523
Filename :
6027523
Link To Document :
بازگشت