Title :
An integrated multi-task control system for fuel-cell power plants
Author :
Yang, Wenli ; Lee, Kwang Y.
Author_Institution :
Western Digital Corporation, Irvine, CA 92612, USA
Abstract :
Development of Smart Grid requires power plants to be more intelligent, efficient, and reliable, which raises new challenges of the control system design for modern power plants. Regarding these requirements, an integrated multi-task control system using artificial intelligence technologies is proposed to improve the efficiency and reliability of a hybrid fuel-cell with gas turbine power plant. The integrated control system consists of a hybrid Neural Network plant model with online learning ability, an Optimal Reference Governor generating optimal setpoints as local control references, and a Fault Diagnosis and Accommodation system to detect internal plant faults and to regulate the plant during plant failures. The three subsystems are integrated to provide compressive management for the power plant. The hybrid fuel-cell power plant is introduced; the structure and strategies of the control system are discussed, and simulation results are presented.
Keywords :
Data models; Fault diagnosis; Fuels; Heating; Turbines; Fuel cells; artificial neural networks; fault accommodation; fault diagnosis; heuristic optimization; hybrid power plant;
Conference_Titel :
Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on
Conference_Location :
Orlando, FL, USA
Print_ISBN :
978-1-61284-800-6
Electronic_ISBN :
0743-1546
DOI :
10.1109/CDC.2011.6160742