DocumentCode :
3434988
Title :
Real-time face recognition using Gram-Schmidt orthogonalization for LDA
Author :
Zheng, Wenming ; Zou, Cairong ; Zhao, Li
Author_Institution :
Res. Center for Sci. of Learning, Southeast Univ., Nanjing, China
Volume :
2
fYear :
2004
fDate :
23-26 Aug. 2004
Firstpage :
403
Abstract :
A real-time face recognition method using Gram-Schmidt orthogonalization for linear discriminant analysis (GSLDA) is presented in this paper. The GSLDA algorithm avoids the large matrices computation such as computing the inverse or diagonalization of matrices, which may be somewhat problematic in terms of computational demands and numerical accuracy. On the other hand, GSLDA also achieves better recognition performance than the classical linear discriminant analysis (LDA) by overcoming the degenerate eigenvalue problem of LDA. Experimental results on real face databases have confirmed the better performance of the proposed method.
Keywords :
eigenvalues and eigenfunctions; face recognition; statistical analysis; Gram-Schmidt orthogonalization; degenerate eigenvalue problem; linear discriminant analysis; real face databases; real time face recognition; Databases; Eigenvalues and eigenfunctions; Face recognition; Information processing; Linear discriminant analysis; Null space; Pattern recognition; Principal component analysis; Scattering; Statistical analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-2128-2
Type :
conf
DOI :
10.1109/ICPR.2004.1334234
Filename :
1334234
Link To Document :
بازگشت